Low–latitude solar wind during the Fall 1998 SOHO–Ulysses quadrature

G. Poletto,¹ S. T. Suess,² D. A. Biesecker,³ R. Esser,⁴ G. Gloeckler,⁵ Y.-K. Ko,⁴ and T. H. Zurbuchen⁶

Short title:
Abstract. The Fall 1998 SOlar-Heliospheric Observatory (SOHO)–Ulysses quadrature occurred when Ulysses was at 5.2 AU, 17.4° South of the equator, and off the West limb of the Sun. SOHO coronal observations, at heliocentric distances of a few solar radii, showed that the line through the solar center and Ulysses crossed, over the first days of observations, a dark, weakly emitting area and through the northern edge of a streamer complex during the second half of the quadrature campaign. Ulysses in situ observations showed this transition to correspond to a decrease from higher speed wind typical of coronal hole flow to low speed wind. Physical parameters of the low latitude coronal plasma sampled over the campaign are determined using constraints from what is the same plasma measured later in situ and simulating the intensities of the Hydrogen Lyman-α and OVI 1032 and 1037 Å lines, measured by the UltraViolet Coronagraph Spectrometer (UVCS) on SOHO. It appears that low latitude wind from small coronal holes and polar wind have different characteristics in the corona, differences well known at interplanetary distances through in situ experiments. Small, low latitude coronal holes have a higher expansion factor than typical polar holes and their plasma moves at a lower speed than plasma from polar holes, reaching, at 3.5 R_{\odot}, only about 1/5 of the terminal speed. Wind emanating from bright regions, above streamer complexes, is, at the altitudes we analyzed (i.e. 3.5 and 4.5 R_{\odot}), about a factor 3 slower than the low latitude coronal hole wind, implying a shift to even higher altitudes in the region where plasma gets accelerated. We surmise that open field regions, interspersed amidst closed coronal loops/streamers, may be at least partially responsible for the well known slow wind speed variability. As in polar fast wind, OVI ions move faster than protons, over the range of altitudes we sampled, and are frozen-in at temperatures of $\approx 1.3 - 1.5 \times 10^6 \ K$, depending on the site where the outflow originates. An Oxygen abundance variation from a value of 8.55, in low latitude holes, to 8.73 in bright areas, has also been inferred.
1. Introduction

SOHO-Ulysses quadratures occur when the SOHO–Sun–Ulysses included angle is 90°. These offer the opportunity to directly compare properties of plasma parcels, observed by SOHO [Domingo et al., 1995] in the low corona, with properties of the same parcels measured, in due time, \textit{in situ}, by Ulysses [Wenzel et al., 1992]. We refer the reader to Suess et al. [2000] for an extended discussion of SOHO-Ulysses quadrature geometry. Here it suffices to recall that there are two quadratures per year, as SOHO makes its one year revolution around the Sun. This, because SOHO is at the L1 Lagrangian point, in essentially the same place as the Earth, while Ulysses is in a near polar \(\sim 5 \) year solar orbit with a perihelion of 1.34 AU and aphelion of 5.4 AU.

We have conducted about ten SOHO-Ulysses quadrature campaigns. In this paper, however, we report only on the 1998 November/December quadrature, when Ulysses was \(\approx 17.4^\circ \) below the equator, off the West limb of the Sun, and at a distance of 5.2 AU. It should be noted that quadrature occurs, of course, at a specific instant in time. But, since Ulysses was within 5° of the limb for 10 days, limb observations corresponded closely to the sub-Ulysses footpoint on the Sun. If there are changes in coronal morphology that can be identified with corresponding changes in the solar wind then the uncertainty in the identification of coronal features with Ulysses measurements can be reduced essentially to zero, even with Ulysses at a distance of 5.2 AU.

Quadrature studies provide complimentary information to that gained during Whole Sun Month (WSM) campaigns in which an observing campaign is conducted for one full solar rotation of 27 days. The purpose of WSM campaigns is to determine the relationship between coronal phenomena and the solar wind. They use solar wind data from a variety of spacecraft but which have so far not included spacecraft at quadrature locations. There is thus generally a time difference between when limb observations of the corona are made and the time of solar origin for the solar wind plasma measured \textit{in situ}. WSM campaigns have contributed greatly to the body
of knowledge on solar-interplanetary relations, with WSM1 resulting in a *Journal of Geophysical Research* special section [Galvin and Kohl, 1999]. By adding results from quadrature campaigns to the WSM body of knowledge, we provide more concise relationships between specific coronal structures and physical parameters and the resulting solar wind and we are able to place stricter constraints on coronal parameters as a consequence of observing the same plasma *in situ*.

The only other technique used to observe the same parcel of solar wind plasma at two points is the radial alignments of interplanetary spacecraft. For example, *Thieme et al.* [1989, 1990] took advantage of an alignment between the two Helios probes to study the evolution of plasma parameters with heliocentric distance inside 1 AU. These observations analyze only interplanetary processes and not coronal processes. However, they do not depend on remote sensing, as do coronal observations which are thus subject to the influence of unknown structure along the line of sight. We minimize line of sight effects here by utilizing data from high in the corona, at 3.5 and 4.5 R_{sun}, for the spectral analysis with UVCS data.

The first quadrature we analyzed, in May 1997, occurred when the wind speed at Ulysses was low and remarkably smooth: 375 ± 25 km/s [Suess et al., 2000] over the entire two week observing period. Analysis of the morphology of the region where the solar wind originated showed it to lie just inside the edge of a streamer brightness boundary, in a configuration that didn’t undergo any major restructuring throughout the campaign. On the contrary, during the December 1998 quadrature SOHO/Large Angle and Spectrometric COronagraph (LASCO) C2 images show at 2.0-3.0 R_{sun} a transition from a situation where a streamer lay completely north of the Sun–Ulysses direction, to a configuration where a streamer lay on and to the south of the Sun–Ulysses direction. As a consequence, the sub-Ulysses footpoint on the Sun initially passes through an unstructured, weakly emitting region, and, later, lies on the northern border of a bright streamer. There was only one small coronal mass ejection near the Ulysses
footpoint so that the observed in situ changes were mainly due to solar rotation bringing features across the limb of the Sun.

This situation permits study of low–latitude high and low speed solar wind sources. In general, low–latitude sources have been found to be highly variable [McComas et al., 1998] but much of this variability has been attributed to time–dependent phenomena. In the present case it appears that we are analyzing quasi-stationary flow due to an essentially steady streamer source and the low latitude extension of a polar coronal hole.

SOHO experiments have provided greatly improved and even entirely new data at high latitudes in the corona over the past solar minimum years, so that we have more and better information on electron densities, kinetic and electron temperatures (both of Hydrogen and minor ions) and Doppler dimming [Hyder and Lites, 1970] in polar coronal holes. Our knowledge of the physical conditions of the regions where low–latitude wind originates is, however, not as good. There are only the recent studies by Miralles et al. [2001], Del Zanna et al. [1999] and Bromage et al. [2000]. Miralles et al., in an analysis of UVCS observations of a low latitude hole, found evidence for a lower Oxygen kinetic temperature and outflow speed than in polar holes in the range 1.5 to 3 R_{sun}. This hole extended for $\approx 30^\circ$ in longitude and $\approx 20^\circ$ in latitude. The equatorial extension of a polar hole, known as the “elephant trunk” during WSM1 (August 10 to September 8, 1996), has been analyzed by Del Zanna et al. [1999], Dobrzycka et al., [1999] and by Bromage et al., [2000], who found the hole to be super-radially expanding from the chromosphere to the corona (up to $r = 2.25R_{\text{sun}}$), the OVI line widths to be ≈ 1.5 times larger than in streamers (at $r = 2.25R_{\text{sun}}$), densities to be about 1/3 the values found in adjacent quiet regions and temperatures (from CDS data) on the order of 8. 10^5 K. WIND observations showed the hole to be the source of wind reaching up to 700-750 km s$^{-1}$, hence, it may not be representative of the source regions of equatorial wind.

In this paper we focus on plasma outflows and their changes in the corona, associated with the changing configuration through which the Sun-Ulysses direction
crosses, and establish a relationship between solar wind speed variation in the corona and solar wind speed variation in interplanetary medium. Abundances and temperatures of the coronal plasma are given based on measurement of the same plasma in the corona and *in situ* at 5.2 AU, distinguishing this analysis from the earlier studies based only on coronal observations.

The paper is organized as follows: in §2, LASCO/C2 images are presented, together with ground based data, to put the quadrature observations into a global context. §3 is the analysis of UVCS data: qualitative results on the behavior of plasma are derived from Lyman-α (§3) and OVI lines (§3.1). Ulysses data from the solar wind plasma instrument (SWOOPS, Solar Wind Observations Over the Poles of the Sun), ion composition instrument (SWICS, Solar Wind Ion Composition Spectrometer) and vector magnetometer (VHM/FGM, Vector Helium Magnetometer and Fluxgate Magnetometer) are described in §4 and then, in §5, we use these to identify values for the coronal physical parameters which allow us to reproduce the line intensities observed on two days representative of times when “fast” and “slow” wind had been measured by Ulysses. A discussion of our results in §6 concludes the paper.

2. LASCO/C2 Observations and the Coronal Context

Figure 1 shows LASCO/C2 negative images [Brueckner et al., 1995] taken on four days during the Fall 1998 quadrature campaign. The black horizontal line marks the heliographic equator and the black line pointing southeast of the equator at -17.4° shows the radial direction to Ulysses. We will refer to this direction when describing limb activity. UVCS slit positions at 3.5 and 4.5 *R*$_{sun}$ during the campaign are shown in the upper right panel (1998/11/30). UVCS observations altogether extended over about 9 days, from late on 29 November (Day of Year - DOY 333) to early on 7 December (DOY 341).

Figure 1 shows the significant changes the west limb of the Sun underwent over
the interval of UVCS observations. On 29 November, C2 emission is dominated by a bright streamer, or complex of streamers, in the northern hemisphere, which extends, on 30 November, to higher altitudes and to a wider latitude interval. Because our observations refer to a southern latitude of $\approx 17.4^\circ$ they show none of this activity. Although over the next three days the streamer emission breaks into a complex of bright, thinner structures extending radially outwards, the Sun–Ulysses direction is apparently unaffected by these changes, which do not reach southern latitudes. This was still true on December 2.

On December 3 enhanced white light emission began to appear south of the equator and a small coronal mass ejection (CME) occurred at the sub-Ulysses point at 21:30h on 4 December. By December 5 the emission appeared as a dense streamer. It had started as a cluster of streamers adjacent to each other on 3 December, spanning a large latitude interval. These increased in brightness over subsequent days and, at the time of the CME, coalesced into one bright feature. The Sun–Ulysses direction no longer went through weakly emitting areas by 5 December, but through the northern edge of this bright feature.

The dim region in the UVCS field of view at 4.5 R_{sun} on the four days 29 November through 2 December is interpreted as a coronal hole. This is consistent with UVCS intensities, LASCO intensities, and the resulting solar wind plasma, abundance, and ionization state properties measured at Ulysses, as we show below. It is also consistent with the ground based observations of the Mauna Loa Solar Observatory (MLSO) Mk3 K-Coronameter, the Wilcox Solar Observatory (WSO) potential field-source surface model of the coronal magnetic field, and the Sacramento Peak National Solar Observatory FeXIV emission on the west limb. Figure 2 shows the FeXIV data in a synoptic map of east and west limb data at 1.15 R_{sun} from Carrington Rotation 1943. Coronal holes are indicated by white areas bordered by black. Superimposed is a horizontal gray bar covering longitudes 172° to 310° and southern latitudes -14°.

Figure 2
to -20°. This bar, which is 90° west of the central meridian, marks the sub-Ulysses footpoint on the Sun at -17.4° latitude over the interval of UVCS observations. It is clear this footpoint lies entirely north of the equatorial extension of the south polar coronal hole in FeXIV from 29 November through 2 December (DOY 333 through 336). The implication is that the equatorward boundary of the coronal hole, which is at \(\sim -30° \) at 1.15 \(R_{\text{sun}} \), diverges both in the east-west direction and towards the equator between longitudes 250° and 300° so that it is north of the direction to Ulysses and \(\geq \) four days in width at the UVCS slit position. In Figure 1 this boundary can be seen to be diverging at 2.0 \(R_{\text{sun}} \) in precisely the suggested manner. Inspection of this boundary in MLSO data shows it to also be diverging. The WSO source surface field shows the heliospheric current sheet as extending far north of Ulysses during this time. The divergence is consistent with MHD models of coronal dynamics [e.g., Neugebauer et al., 1998; Linker et al., 1999] but seems to contradict the lack of such divergence proposed by Woo et al. [1999]. From the images in Figure 1 it is difficult to tell whether the flow is already radial at 3.5 \(R_{\text{sun}} \), but the appearance is consistent with radial flow at and beyond 4.5 \(R_{\text{sun}} \). The width of the fast and slow wind regions originating from these structures is consistent with radial flow beyond 4 \(R_{\text{sun}} \).

We surmise that observations acquired during the first days of the quadrature campaign refer to the limb passage of the equatorial extension at 2-5 \(R_{\text{sun}} \) of the south polar coronal hole, even if it doesn’t reach, at the coronal level of FeXIV maps, the latitude of 17.4°, through which the radial to Ulysses crosses. If our hypothesis is correct, we expect the earliest UVCS observations, taken late on 29 November, to be representative of plasma from the western edge of the hole. A similar situation will hold for the following \(\approx 4 \) days that it takes the coronal hole to rotate past the limb of the Sun.

The bright region trailing the coronal hole, in the Sacramento Peak FeXIV data of Figure 2, shows up at higher altitudes, in LASCO images, as the streamer complex
we described. If, as generally claimed, the source of slow wind is related to streamers [e.g., Gosling et al., 1981; Sheeley et al., 1997; Habbal et al., 1997], we expect at these times a slower plasma outflow than observed on the previous days. In the following section we analyze UVCS data to check whether the information they convey comply with the qualitative picture emerging from LASCO and Sacramento Peak maps.

3. UVCS Observations

UVCS observations during the 1998 quadrature were made with the same plan used during the 1997 quadrature campaign [Suess et al., 2000]. From 29 November to 7 December, 1998, we acquired data over about nine hours per day, alternating between altitudes of 3.5 R_{sun}, and 4.5 R_{sun}, typically observing 5400 s at the higher, and 2700 s at the lower, altitude. Each observational run is made up of 5 minute exposures to enable isolating temporal variations whenever the count rates, over that limited time, are high enough to be statistically significant. The slit, 100 μ wide, was set normal to the solar radius, with the radial to Ulysses going through its zero position. Data have a spectral binning of 2 pixels (0.1986 Å) and a spatial binning of 3 pixels (21 arcsec); standard calibration procedures and corrections for flat field effects have been applied [Gardner et al., 1996]. There was no need for stray light corrections at the heights we were observing.

The UVCS spectra covered a number of lines. The brightest line is the Hydrogen Lyman-α; the OVI doublet lines at 1032 and 1037 Å – the most intense after Lyman-α – easily being a factor 100 weaker. Hydrogen Lyman-β and the Si XII line at 520.66 Å also were detected, but in the present work we focus only on Hydrogen Lyman-α and OVI lines.

The total intensity of the Lyman-α line is derived by integrating in wavelength over the line profile and summing over the 5 minute exposures which make up individual observations. The changing morphology at the west limb of the Sun, illustrated in the
previous section, shows up clearly in the spatial profile of the Lyman-α intensity along the slit given in Figure 3. Each panel in this figure shows the average Lyman-α intensity over one of the 2700 s time intervals at $3.5 \, R_{\odot}$ and the arrow gives the position, along the slit, of the radial to Ulysses. Altogether similar plots can be constructed at $4.5 \, R_{\odot}$.

The transition, from streamer activity north of the Sun–Ulysses direction to streamer activity along and south of the Sun–Ulysses direction, is quite obvious: the Sun–Ulysses direction runs through dark emitting areas until, on December 4, it cuts through the streamer edge.

Another way to illustrate the behavior of the Lyman-α line is shown in Figure 4 which gives the temporal profile of the Lyman-α line intensity, averaged over a number of pixels corresponding to an angular extent of 1°, about the radial to Ulysses. Values at 4.5 solar radii have been multiplied by 3.1. The plot shows that the Lyman-α intensity increases by a factor ≈ 3 at DOY 338 (December 4), but also reveals that the ratio between intensities at 3.5 and $4.5 \, R_{\odot}$, $I_{Ly-\alpha,3.5}/I_{Ly-\alpha,4.5}$, is 3.1, during the first days of observations, and, later on, is lower than 3.1.

In order to interpret this behavior in terms of the physical parameters of the regions where the Lyman-α line originates, we need to remind the reader that the line is, at the heights we observe, radiatively excited and that the total (i.e. integrated over the line profile) Lyman-α intensity, as observed along the direction \mathbf{n} is given by

$$I_{Ly-\alpha} = \frac{hB_{12}\lambda_0}{4\pi} \int_{-\infty}^{\infty} N_1 dx \int_{\Omega} p(\varphi) d\omega' \int_{0}^{\infty} I_{chrom}(\lambda, \mathbf{n}')\Phi(\lambda - \lambda_0)d\lambda$$ \hspace{1cm} \text{(1)}$$

where h is the Planck constant; B_{12} is the Einstein coefficient for the line; λ_0 is the rest value for the central wavelength λ of the Lyman-α transition; N_1 is the number density of hydrogen atoms in the ground level; the unit vector \mathbf{n} is along the line of sight x and the unit vector \mathbf{n}' is along the direction of the incident radiation; $p(\varphi) \, d\omega'$ –where ω' is the solid angle around \mathbf{n}'– is the probability that a photon travelling along the direction \mathbf{n} was travelling, before scattering, along the direction \mathbf{n}'; Ω is the solid angle subtended.
by the chromosphere at the point of scattering; I_{chrom} is the exciting chromospheric radiation and Φ is the coronal absorption profile.

In a more concise way, we can rewrite the previous equation as

$$I_{\text{Ly-}\alpha} \approx \text{const} \times \int_{-\infty}^{\infty} f(T_e)F(v,T_k)N_e dx$$ \hspace{1cm} (2)

which shows that the line intensity depends on density, electron temperature, plasma outflow speed and disk intensity (which is included in the const), T_k being constrained by the line width. Because of Doppler dimming, $I_{\text{Ly-}\alpha}$ decreases, as the plasma outflow speed increases (all other parameters being equal). Hence, if the scenario outlined in Section 2 were correct, the higher $I_{\text{Ly-}\alpha,03.5}/I_{\text{Ly-}\alpha,04.5}$ ratio observed in the first days of observations would be explained by a higher outflow speed gradient in the coronal hole than in the streamer observed later on.

However, let us first check whether the behavior of $I_{\text{Ly-}\alpha}$ during the quadrature campaign can be explained in terms of density, temperature, and disk intensity in atmospheres with no plasma outflows. Assuming that plasma outflows are negligible (or do not change on DOY 333-342), and that T_e and I_{chrom} are approximately constant with time, we may attempt to interpret the data of Figure 4 in terms only of density vs. height and density vs. time.

Because the white light emission depends on the electron density, we know from LASCO/C2 in Figure 1 that densities increase between DOY 333-337 and DOY 338-342, accounting for the increase in Lyman-\(\alpha\) emission with time shown in Figure 4. However, electron density vs. height profiles, derived via a Van de Hulst inversion of the LASCO/C2 polarization-brightness (pB) data, for $r \geq 3.5R_{\text{sun}}$, show that the $n_{e,03.5}/n_{e,04.5}$ ratio is, in the second half of the campaign (streamer region), greater than or equal to that at earlier times (coronal hole region), as illustrated by Table 1 and in contrast to the behavior of the $I_{\text{Ly-}\alpha,03.5}/I_{\text{Ly-}\alpha,04.5}$ ratio. This implies that the Lyman-\(\alpha\) behavior depends on other parameters in addition to electron densities.
Table 1. Electron Densities (n_e) from LASCO pB Data (cm^{-3})

<table>
<thead>
<tr>
<th>Structure</th>
<th>$r = 3.5R_{sun}$</th>
<th>$r = 4.5R_{sun}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronal Hole</td>
<td>$1. \times 10^5$</td>
<td>$4. \times 10^4$</td>
</tr>
<tr>
<td>Streamer</td>
<td>2.35×10^5</td>
<td>8.5×10^4</td>
</tr>
</tbody>
</table>

To eliminate one more variable, we use values of the disk Lyman-α intensity provided by the UARS/SOLSTICE (SOlar Stellar Irradiance Comparison Experiment on the Upper Atmosphere Research Satellite) experiment, which gives the average of the whole disk along the Sun-Earth direction. If we make an average over the seven days before and after the day when data are taken, and do this for a typical day in the first half of the campaign, and a typical day for the second half of the campaign, it turns out that the disk Lyman-α intensity changes by only a few percent, being higher during the first half of the campaign. As a consequence, I_{chrom} has no major effects on the coronal Lyman-α behavior.

Next we consider whether a change in electron temperatures, from streamers to coronal hole conditions, may explain the observed behavior of the Lyman-α intensity vs. height and time. To this end we recall that the electron temperature, T_e, in streamers at $3.5\ R_{sun}$ (and higher), is poorly known. The only estimate above the low corona is that by Fineschi et al. [1998], who found $T_e = 1.1 \times 10^6\ K \pm 0.25 \times 10^6\ K$ at $2.7\ R_{sun}$, a value which is in approximate agreement with the values found by Gibson et al. [1999] for the scale height temperatures of streamers during WSM1. Values on the order of $8.5 \times 10^5\ K$ at $3.5 - 4.5\ R_{sun}$ are compatible with both the Fineschi et al. estimate and the
Electron temperatures in coronal holes at altitudes $\geq 3.5 R_{\text{sun}}$ are even less well known. Ko et al. [1997], in a study based on ion charge states from measurements made in situ with SWICS [Gloeckler et al., 1992] in the fast wind from a south polar coronal hole, give $T_e \sim 7.3 \times 10^5$ K at 3.5 R_{sun}, which is $\sim 10\%$ lower than the streamer temperature given above. Two-fluid models of coronal holes [Habbal et al., 1995] give $T_e \sim 9.1 \times 10^5$ K at the same height. Hence, coronal hole electron temperatures are approximately equal to or lower than streamer electron temperatures at this height.

If we take the interval 7.3×10^5 K $\leq T_e \leq 9.1 \times 10^5$ K as an indication of the T_e variation to expect at 3.5 R_{sun}, we anticipate minor fluctuations in the Lyman-α intensity as a consequence of a change in the electron temperature from “typical” streamer to coronal hole values (the H$^{+0}$ ion abundance changes by $\approx 30\%$, between these two temperatures). We conclude that unless we invoke a contrived behavior for T_e vs. r and for the change of T_e from coronal holes to streamers, unsupported by any evidence, this discussion leads us to invoke a change in the plasma outflow speed if we want to understand the behavior of the Lyman-α intensity vs. time and height. We now turn to the analysis of OVI lines to determine whether the conclusions we draw here are consistent with OVI ion behavior.

3.1. The OVI 1032 and 1037 doublet lines

OVI lines provide, through the ratio of their total intensities, a proxy for plasma outflow speed [Noci et al., 1987]. In first approximation, we may say that the lower the ratio R of the total intensity of the 1032 Å to the 1037 Å line, where $R = I_{1032}/I_{1037}$, the higher is the plasma outflow speed. This ratio does not depend on Oxygen abundances and disk intensities, it is insensitive to T_e [Li et al., 1998] and, for a given density, it is a function of the plasma outflow speed.

Figure 5 shows the profile of R vs. time on DOY 333-342 derived from measured
OVI lines intensities at 3.5 and 4.5 R_{sun}. The OVI line intensity has been averaged over the pixels lying within 1° about the radial to Ulysses, as we did for the Lyman-α line. Values at 3.5 R_{sun} are higher than those at 4.5 R_{sun}, as expected due to lower outflow speeds at lower heights. Moreover, in reference to the scenario we described in the previous section, values during the first part of the campaign point to a plasma outflow faster than on later days. The transition occurs at \approx DOY 338, that is, on \approx 4–5 December, when the radial to Ulysses leaves the dark area and crosses into the streamer region, in agreement with the conclusions we made on the basis of LASCO/C2 data in Section 2.

Because we have densities derived from LASCO/C2 pB data, and R is insensitive to other parameters, including T_e, we may build R vs. outflow speed (V_{OVI}) curves and find the OVI outflow speed that fits the observed ratios. As typical values we need to reproduce, we separately choose the average of R over all the data points before or after the transition from lower to higher R values in Figure 5. We thus end up with four values which represent, at 3.5 and 4.5 R_{sun}, typical “dark” and typical “bright” equatorial regions. We note in passing that the steep transition to higher R values possibly occurs at 3.5 R_{sun} earlier than at 4.5 R_{sun}, hinting there is a coronal hole which is not as wide in longitude at 3.5 R_{sun} as at 4.5 R_{sun}.

Typical “dark” area values turned out to be, at 3.5 and 4.5 R_{sun}, $R=1.73$ and $R=1.32$, respectively; typical “bright” areas values are, at 3.5 and 4.5 R_{sun} are $R=2.65$ and $R=2.15$, respectively. These are the values we need to reproduce, in order to derive values for the outflow speed of OVI ions. Before describing the results of our simulations, it is worth pointing out that, during the May 1997 quadrature campaign, when Ulysses was immersed in slow wind from the streamer belt, we found R to be 2.69 and 2.24, at, respectively, 3.5 and 4.5 R_{sun}, essentially the same as the values derived in the present campaign in “bright” areas. Values in dark areas are higher than those given by Cranmer et al. [1999] in polar coronal holes ($R = .95$ at $3R_{\text{sun}}$) but are consistent
with those of Miralles et al. [2001] for equatorial holes ($R = 1.7$ at $3.15 R_{\text{sun}}$), confirming the latter to be sources of lower speed wind than from polar holes.

As we mentioned, the ratio of the total intensity of the OVI 1032 to the OVI 1037 Å lines depends mainly on densities and OVI outflow speed. However, because OVI lines form both via radiative excitation (analogous to what happens for the H Lyman-α line) and via collisional excitation, other parameters such as T_e and the kinetic temperature, T_k (or, more precisely, its components normal, T_\perp, and parallel, T_\parallel, to the magnetic field direction), need to be known in order to evaluate $R = I_{1032}/I_{1037}$. The kinetic temperature T_\perp may be derived from the OVI line widths, measured over the same pixels we used for the intensity evaluation. OVI lines are too weak at the altitudes we analyze to allow us to derive a clean profile, unless we make averages over larger spatial extents and longer observing times. Keeping these uncertainties in mind, we derived the OVI 1032 line width by summing over all the observations taken on a single day and analyzing the resulting profile (we couldn’t make spatial averages, as the result would not have been representative of the ambient along the radial to Ulysses). It turns out that when the radial to Ulysses was crossing the “bright” areas, the kinetic temperature at 3.5 and 4.5 R_{sun} was, respectively, $1.5 \times 10^7 K$ and $2 \times 10^7 K$, values which differ by $\leq 10\%$ from those given by Kohl et al. [1997] for streamer kinetic temperatures.

Kinetic temperature estimates in dark regions are subject to larger uncertainties. The value we derived with the procedure described above leads to $T_\perp \approx 6.8 \times 10^7 K$, with hardly any variation with altitude. Cranmer et al. [1999] give higher T_\perp for polar coronal holes; our estimate is, however, consistent with values given by Miralles et al. [2001] for T_\perp in equatorial holes. The agreement of the kinetic temperatures we derive with values found either for streamers or coronal holes, as appropriate, is a further evidence that UVCS is observing first a hole and, later on, a streamer. In order to build the R vs. V_{OVI} curves, we used electron temperatures on the order of $10^6 K$, and parallel kinetic temperature values in between T_\perp and T_e. We postpone a discussion of these
parameters to Sections 5.1 and 5.2, as they are not crucial for the R vs. $V_{OV I}$ curves.

Results from R vs. V_{out} profiles give, as typical values for the OVI plasma outflow speed in “dark” areas, $V_{OV I@3.5R_{sun}} = 200 \text{ km s}^{-1}$ and $V_{OV I@4.5R_{sun}} = 230 \text{ km s}^{-1}$; for plasma outflows in “bright” areas, $V_{OV I@3.5R_{sun}} = 65 \text{ km s}^{-1}$ and $V_{OV I@4.5R_{sun}} = 105 \text{ km s}^{-1}$. These values fully support the conclusion we drew from the qualitative analysis of the Lyman-α that plasma, over the first days of the quadrature observations, flows at higher speed than over the second half of the campaign and supports the interpretation of dark areas in terms of coronal extension at low latitudes, and of bright areas in terms of streamer plasma.

So far, SOHO data have allowed us to evaluate densities, kinetic temperatures (T_{\perp}) and the OVI ion outflow speed. By using Ulysses in situ data, we can derive other coronal plasma parameters, such as the proton coronal flow speed. With this information, we may model the OVI and Lyman-α line intensities, at 3.5 and 4.5 R_{sun}, setting stringent constraints to parameters which, unless in situ data are used, remain ill defined. This will be shown in §5.

4. Ulysses SWOOPS, SWICS, and VHM/FGM

We would like to relate in situ solar wind plasma and magnetic field data as precisely as possible to their coronal sources and thereby provide quantitative constraints on coronal plasma properties. The mostly low level of solar activity, with the 4 December CME marking the distinct transition from coronal flow to streamer flow, permits this to be done very accurately. The first step is to extrapolate the in situ properties back to the Sun, which will be done in two ways.

Figure 6 shows the one-hour averaged proton flow speed, proton temperature, and proton and alpha particle densities from SWOOPS, the one-hour averaged east-west magnetic field (B_ϕ) from VHM/FGM, and the three-hour averaged O^{7+}/O^{6+} density ratio from SWICS. The dates at Ulysses are marked across the top of the plot. In
making the extrapolation, we will assume radial flow. This is invalid below 2.5 \(R_{\text{sun}} \) due to the diverging flow but appears valid above 3.5-4.5 \(R_{\text{sun}} \) because the fast wind stream in Figure 6 is 3-4 days wide and the high speed flow at 4.5 \(R_{\text{sun}} \) deduced from UVCS above is also 3-4 days wide. Equal widths are also found for the slow wind at 4.5 \(R_{\text{sun}} \) and at Ulysses. We will use the difference in size of the coronal hole at 1.15 \(R_{\text{sun}} \) in Figure 2 and at 4.5 \(R_{\text{sun}} \) and Ulysses to estimate the amount of divergence, or spreading factor, in the flow. There can also be significant exceptions to the assumption of radial flow at the front of corotating interaction regions (CIRs) \([\text{Gosling and Pizzo, 1999;} \text{ Pizzo, 1994}]\). The interaction region in Figure 6 is at the front of the fast wind interface, on 19 and 20 December 1998, which we will avoid in our analysis.

The transit time of each solar wind parcel to Ulysses depends on the speed of that parcel which, in turn, is generally not a constant so that a quantitative extrapolation is an impossible inverse, nonlinear problem. However, simple approximations can be used and then fine-tuned by matching with the observed coronal structure. The simplest extrapolation is to map an interval of solar wind plasma back to the Sun using the average measured speed of the plasma. The average speed on 19-27 December 1998 was 450 km/s. Combining this with the instantaneous distance to Ulysses gives the origin dates shown at the bottom of the first panel in Figure 6 for an extrapolation back to 1 \(R_{\text{sun}} \). The corresponding DOY is shown along the bottom of the figure and we will use the DOY when referring to specific dates and time intervals.

In the top panel of Figure 6 the “dwell” in the fast solar wind, beginning just after the CIR, is highlighted. The dwell is a dynamic rarefaction region \([\text{Gosling and Pizzo, 1999;} \text{ Pizzo, 1994}]\) for which relatively precise backward extrapolations can be carried out \([\text{Neugebauer et al., 1998}]\). The speed and density in a rarefaction always fall from their peaks just after the CIR, on the back side of the fast wind stream. The extrapolation for \(v=450 \) km/s suggests the fast wind originated at the Sun on DOY 335-338, centered at \(\sim\)DOY 337. The proton temperature is \(\sim 5 \times 10^4 \) K except near
the end of the dwell and the sector boundary, just after the end of the dwell on DOY 339.3 is unusually distinct. The proton number density is \(0.15\ \text{cm}^{-3}\) at the beginning of the dwell and decreases until it reaches a minimum on \(\sim\text{DOY 337}\). This is typical of a rarefaction and \(0.1-0.15\ \text{cm}^{-3}\) scales to \(2.7-4.0\ \text{cm}^{-3}\) at 1 AU. All of these properties are typical of flow from a small, equatorial coronal hole [Neugebauer et al., 1998]. The \(\text{O}^7+/\text{O}^{6+}\) density ratio is relatively low from DOY 335 to the beginning of DOY 338, indicative of coronal hole flow because of the generally lower electron temperature in coronal holes. The large variability in this ratio is a real effect [Aellig et al., 1999] which we suggest is due to the highly filamentary nature of coronal hole flow [Suess et al., 1998].

The other way we extrapolate solar wind back to the Sun is to use the “constant velocity approximation” in which the speed of each sample of plasma is assumed constant for computing the transit time. Applying this extrapolation to the dwell, in particular, generally gives a qualitative estimate of the size of the originating coronal hole. The result of this approximation is shown in Figure 7. The top panel in this figure reproduces that in Figure 6. The second panel is the flow speed extrapolated back to \(1\ \text{R}_{\odot}\) and the third panel is the extrapolated \(\text{O}^7+/\text{O}^{6+}\) density ratio. This figure shows that all of the plasma in the dwell appears to originate from a longitude range at the Sun which is only one day in width. This is the same as the width of the FeXIV coronal hole shown in Figure 2. Figure 7 places the center of the high speed wind source at \(\sim\text{DOY 337}\), just as did the extrapolation using \(v=450\ \text{km/s}\). This differs from the location of the coronal hole in FeXIV at DOY 335.5 in Figure 2. The FeXIV coronal hole coincides with the dim regions in LASCO/C2 and UVCS data so we are assured this is the true location of the hole. Therefore, we deduce that the extrapolation back to the Sun using either \(v=450\ \text{km/s}\) or the constant velocity approximation requires an additional \(\sim20^\circ\) of rotation, or 1.5 days, to match with the observed morphology. Neugebauer et al. [1998] found that an additional \(22^\circ\) of rotation had to be added, on the average,
to extrapolations from Ulysses back to 2.5 R_{sun} in a study of source regions for the solar wind during the Ulysses “fast latitude scan” in 1994-1995. They attributed this additional rotation to a failure of the extrapolation to accurately take into account solar wind acceleration near the Sun and the adjustment should be approximately the same for the November/December 1998 quadrature. The time difference in extrapolating to 2.5 or 1.0 R_{sun} is less than 1 hour so he 1.5 day adjustment in the extrapolation that we find, to match with coronal morphology, is supported by independent evidence and we have identified and separated the coronal sources of fast and slow wind with considerable confidence.

One observation we can make from Figure 7 is that all of the solar wind plasma in the dwell appears to originate from the same one day range in longitude at the Sun. This apparently includes a portion of plasma with enhanced O^{7+}/O^{6+} density ratio $\equiv R_O$, which has been identified with filled triangles, as well as the low R_O value plasma plotted as open squares. A low R_O would normally be used to identify coronal hole as this correlation has been well documented with Ulysses/SWICS using data from inside 2.2 AU [Geiss et al., 1995]. Doing this for the data in Figure 6 would imply the boundary between coronal hole and streamer flow occurs at DOY 338.0 at the time of the CME, which is in the dwell on the back of the fast wind where there is no obvious alternative way to separate coronal hole flow slow wind. The constant velocity approximation implies that all the plasma from the dwell originated from the same narrow range in longitude, including some of the plasma with an elevated R_O. The simplest interpretation is that the plasma on DOY 338.0-339.3 in Figure 6 comes from the small and slow (300 km/s) CME that actually occurred on DOY 338.8. Enhanced O^{7+}/O^{6+} and alpha particle to proton density ratio are strongly associated with CMEs [Forsyth and Gosling, 2001; Galvin, 1997; T. Zurbuchen, priv. comm.]. The slight time difference error in the extrapolation can be attributed to slowing of the CME as it moves out into the solar wind which also has resulted in no speed difference between the
ambient and CME material at Ulysses. The result in Figure 7 is sufficient to place the center of the extrapolated coronal hole at DOY 337, which corresponds to the observed coronal hole at DOY 335.5 after the additional 20° eastward shift required by coronal morphology and similar to that described by Neugebauer et al. [1998].

Another observation from Figure 7 is that given the spreading of the flow in the east-west direction from one day in width at the Sun to 3-4 days in width at Ulysses and assuming a similar expansion equatorward, the local spreading factor for this equatorial extension of the polar coronal hole is ~ 10. This coronal hole is thus locally a small, rapidly diverging, equatorial coronal hole. Neugebauer et al. [1998] found that such coronal holes produce slower solar wind (~ 500 km/s), just as seen in Figures 6 and 7, although there could also be slowing of the material between the Sun and 5.2 AU in the CIR [Pizzo, 1994]. This is in agreement with the results found from UVCS that indicate lower speeds in the coronal hole than typically found for the polar coronal holes at solar minimum.

Turning to the slow wind coming from the bright streamer observed with LASCO/C2 and UVCS on DOY 338-442, this corresponds to the flow on DOY 339.5-342 and slightly beyond in figure 6. There is a small CME at ~ DOY 341.5 so we will not consider solar wind flow after that time - the CME occurred later at the Sun and was outside our observation window. The slow wind has a variable speed between 420 km/s on DOY 339.3 and 450 km/s on DOY 340.5. The density peaks earlier, at DOY 339.3, at a value of ~ 0.15-0.20 cm⁻³. The mass flux at the density peak has been used to define the proton mass flux used in evaluating the UVCS data. Values for R_O throughout the interval DOY 339-342 indicate a slow wind source in the corona.

Finally, the Oxygen abundance can be derived by combining He/H from SWOOPS with He/O from SWICS, with somewhat lower time resolution than for the data shown in Figures 6 and 7. The one-day average values of the ratio of Oxygen to proton number density is shown in Figure 8 for DOY 350-365 at Ulysses (16 December - 31 December).
The top panel shows the corresponding flow speed derived from alpha particles (solid line) and Oxygen (open triangles). The bottom panel shows the O/H ratio. The corresponding days at the Sun, assuming \(v = 450 \text{ km/s} \), can be read from Figure 6 and the same 1.5 day (20\(^\circ\)) eastward shift applies here, as there, to match this structure with the coronal morphology. Knowing this, the oxygen abundances on DOY 358 and DOY 361.5 in this figure are used to compute the oxygen mass flux in the corona with UVCS data on DOY 336 and DOY 339. It is worth noticing that the O/H abundances shown in Figure 8 range from 0.0007 to 0.001: that is, they are rather large, if we compare them with those measured during mid-1992 and mid-1993 when the O/H ratio, for \(v_\alpha \leq 500 \text{ km s}^{-1} \), ranged in between 0.0002 and 0.0008 [Von Steiger et al., 1995]. Because abundances are highly variable [Aellig et al., 1999], this may not be surprising. However, we like to point out that the values we used for our simulations of the OVI line intensities are, in streamer regions, higher than in coronal holes, in agreement with SWICS measurements and in contrast with the behavior of the Oxygen abundance in fast vs. slow wind, where the higher the speed, the higher is the Oxygen abundance. It is interesting to note that having mass fluxes for both oxygen and protons it would be possible to remove the streamline spreading factor between 4.5 \(R_{\text{sun}} \) and Ulysses from the analysis, if necessary.

5. Plasma parameters in low-latitude coronal regions

5.1. Low-latitude solar wind from coronal holes

We start analyzing data from the first half of the quadrature campaign when we observe the equatorward extension of a polar coronal hole. We focus here on the proton flow speed, \(v_p \), which may be identified by modeling the observed Lyman-\(\alpha \) intensity on the basis of known parameters (density, disk brightness \(I_{\text{chrom}} \)) and of the value of \(v_p \) for which the simulated intensity reproduces observations. Because \(I_{\text{Ly}-\alpha} \) depends on
other parameters as well, like T_e, this procedure allows us to find a set of parameters compatible with observations.

The Ulysses SWOOPS experiment provides \textit{in situ} values of the proton density and speed, reducing the number of free parameters. The proton density on December 20 (which is the time when protons leaving the Sun on December 2 reach Ulysses), taken back to 1 AU, is about 4 particles cm$^{-3}$ and the speed is on the order of 500 km s$^{-1}$. Hence the mass flux turns out to be $\approx 1 \times 10^{13}$ cm$^{-2}$ s$^{-1}$ and, because of mass flux conservation, this value represents the coronal mass flux as well. At 4.5 R_{sun} we may safely assume the expansion to be radial: the \textit{Kopp and Holzer} [1976] superradial expansion, for instance, which \textit{Miralles et al.} [2001] suggest to hold also in equatorial holes, differs by only a few percent from a radial expansion in the interval between 3.5 and 4.5 R_{sun}. In this case, it turns out that the proton speed is ≈ 150 km s$^{-1}$, at 4.5 R_{sun}.

In order to calculate $I_{\text{Ly}\alpha}$ with this value of v_p and the known densities and I_{chrom}, we need to fix values for T_{\parallel}, T_{\perp} and T_e. Because the perpendicular kinetic temperature T_{\perp} is constrained by the line width (and plays a minor role in the line intensity calculation, for T_{\perp} values measured in equatorial and polar holes) we are left with only two free parameters, T_e and T_{\parallel} (the latter being less crucial than T_e). As we mentioned, the electron temperature is essentially unknown in equatorial holes. For simplicity, we assume that the T_e vs. r profile is the same in equatorial and polar holes. \textit{Cranmer et al.} [1999], in their polar hole model, used the T_e vs. r profile of \textit{Ko et al.} [1997], which gives $T_e \approx 5.5 \times 10^5$ K at 4.5 R_{sun}. In this case the computed and observed Lyman-\(\alpha\) intensities differ by ≤ 10-15%, depending on whether we assume a constant T_e along the line of sight (which corresponds to assuming Hydrogen to be frozen in, at this distance), or T_e to vary along the line of sight with the \textit{Ko et al.} profile. The parallel kinetic temperature has been assumed to be on the order of 10^6 K, higher T_{\parallel} leading to higher Lyman-\(\alpha\) intensities.
Mass flux conservation implies, at an altitude of 3.5 \(R_{\text{sun}} \), an outflow speed of \(\approx 100 \ km \ s^{-1} \). However, in order to reproduce the observed intensity within a 20% uncertainty, we need to assume that \(T_e \) is about 15% higher than predicted by the Ko et al. profile. This hints at a steeper \(T_e \) profile in equatorial than in polar coronal holes.

We may compare the present results with previous analyses of polar and equatorial holes. Cranmer et al. [1999] semiempirical model focuses on polar holes up to 3.5 \(R_{\text{sun}} \). At that altitude they found proton speeds which range between 200 and 400 \(\ km \ s^{-1} \). The wide spread in the proton outflow speed is to be attributed to the wide range of \(v_p \), \(T_{\parallel} \) and \(T_{\perp} \) parameters that lead to the same Lyman-\(\alpha \) intensity, although some sets of parameters are probably untenable because the mass flux they predict is inconsistent with values measured in situ. If we compare the coronal outflow speed we derived with the coronal outflow speed in polar hole models that complies with mass flux conservation it turns out that the low-latitude speed is about a factor 2.6 lower than the high latitude fast wind speed (the mass flux value adopted by Cranmer et al. differs by only 3% from the mass flux measured by Ulysses during the low latitude hole passage). The low-latitude wind originating from the hole we analyze, reaches about 500 \(\ km \ s^{-1} \), which is about a factor 1.5 lower than the fast wind from polar holes. Hence the ratio between polar and equatorial wind in the corona is higher than the ratio between polar and equatorial wind at 1 AU, implying that equatorial wind accelerates throughout a longer altitude range, in the corona, than polar wind does.

The Oxygen flow speeds at 3.5 and 4.5 \(R_{\text{sun}} \) have been derived in Section 4. It has still to be proven, though, that those values are compatible with the observed intensities of the OVI lines, because different intensities can obviously result in the same value of \(R \). Hence, we synthesize also the OVI doublet lines, adopting the values of densities, of kinetic temperature \(T_{\perp} \) and of the outflow speed mentioned earlier. We need also to know the disk intensities in the OVI 1032 and 1037 Å lines and in the CII 1037 and 1036.3 Å lines. Unfortunately, we do not have values for the disk intensities of these lines.
at the time of the quadrature campaign. Hence we assumed Oxygen VI ions to behave as Ne VIII or N V ions, whose increase with time throughout the ascending phase of the present solar cycle has been given by Schühle et al. [2000]. The CII intensities have been scaled accordingly. Three parameters, T_\parallel, T_e and the Oxygen abundance, are still necessary in order to model the OVI intensities. SWICS, through the O^7+/O^6+ ratio and the O/H vs. time profiles, gives us some information on these parameters and shows that T_e and the Oxygen abundance are lower during the low latitude hole passage than at later times. Moreover, because Oxygen ions move faster than Hydrogen at the coronal heights we observe, and, at 1 AU, move at about the same speed, we may assume that the in situ O/H value represents an upper limit to the Oxygen abundance at coronal levels.

If the OVI 1032 and 1037 doublet lines are synthesized assuming an electron temperature of 1.3×10^6 K (which corresponds to the freezing-in temperature for O^7+/O^6+ ratio of ~ 0.08), an Oxygen abundance of 8.55, a T_\parallel of 3×10^7 K, the modeled and observed OVI intensities differ by less than 10%, both at 3.5 and 4.5 R_{\odot}. These parameters comply with the in situ constraints, but an increase of the electron temperature and a simultaneous increase of the Oxygen abundance may, a priori, be thought to yield the same OVI intensities. This alternative can be ruled out, because the Oxygen coronal abundance has to be about half of the in situ abundance, if we consider that the ratio $(N_O V_O)/(n_H v_H)$ is constant and the ratio between the OVI ion speed and the proton speed in the corona is about 2 (all ions of the same element have been assumed to have the same outflow speed, see Ko et al. [1997]). SWICS data give an Oxygen abundance of ≈ 8.84: assuming the coronal Oxygen abundance value $(O/H)_{cor} \simeq \frac{1}{2}(O/H)_{1AU} \pm 20\%$, the Oxygen abundance value quoted above can vary only by ≈ 0.05, which would lead to a change in the electron temperature of $\approx 10\%$. Such a constraint in the range of the physical parameters representative of the OVI outflow from low-latitude coronal holes has been possible only because in situ data from
the coronal plasma sampled by SOHO were available.

Oxygen speeds at altitudes up to 3 solar radii have been derived by Miralles et al. [2001]. Our values are on the upper limit of the range of values that would be extrapolated from their V_{out} vs. r profile. Whether this is to be ascribed to a difference between the behavior of equatorial hole vs. equatorial extensions of polar holes, is still an open question. We notice however that a variability in wind speed from low latitude holes has been inferred also from *in situ* experiments [Neugebauer et al., 1998] and it is not surprising to find the same result at coronal levels.

5.2. Low-latitude solar wind from streamer regions

When we calculate the mass flux at Ulysses during the second half of the quadrature, with the purpose of inferring the proton outflow speed in the corona, we obtain a speed much lower than at earlier times. This is due to a combination of two effects: on December 5, which we consider representative of the conditions at the time the radial to Ulysses was crossing the bright areas, the mass flux at Ulysses is lower than it was on December 2 by a factor ≈ 1.25, and the coronal densities, on December 5, are higher than at earlier times. As a consequence, the proton outflow speed, at $4.5 \ R_{sun}$, turns out to be on the order of $60 \ km \ s^{-1}$, and, at $3.5 \ R_{sun}$, to be on the order of $35 \ km \ s^{-1}$.

It is worth noticing that these outflow speeds are 2.5-3 times smaller than the outflow speed, at the same altitudes, over the coronal hole sampled at earlier dates, but the *in situ* measurements of the proton speed show it to be only a factor 1.16 lower than during the coronal hole passage. This seems to imply that the region where the wind from streamers gets accelerated is located at larger distances, with respect to fast wind from low-latitude holes.

The Lyman-α intensities from the streamer regions have been modeled, analogously to what we did before, taking into account that the exciting radiation is a little lower than at earlier times, using the appropriate density vs. height profile and an electron
temperature $T_e = 9 \times 10^5$ K, in agreement with our discussion of Section 3. Line intensities are reproduced with a 10-15% accuracy. T_{\parallel} has been chosen between T_{\perp} and T_e: at 4.5 R_{\sun} the best agreement with observations is obtained for $T_{\parallel} = T_e$, but changing to $T_{\parallel} = T_{\perp}$ varies $I_{Ly-\alpha}$ by only 10%.

When simulating the OVI doublet line intensities we need to take into account constraints by in situ observations. The O^{7+}/O^{6+} vs. time profile indicates that T_e has to be larger than assumed when synthesizing coronal hole lines and the O/H vs. time profile analogously indicates a larger O/H value than on previous days, an upper limit being on the order of $O/H = 0.0009$. Hence we chose $\log O/H = 8.73$ and $T_e = 1.5 \times 10^6$ K (which corresponds to the freezing-in temperature for O^{7+}/O^{6+} ratio of ~0.2). On the basis of these parameters, the $V_{OVI@3.5}$ and $V_{OVI@4.5}$ derived in Section 3.1, and the measured T_{\perp} values, we have been able to reproduce the observed OVI intensities with a $\leq 10\%$ accuracy, assuming T_{\parallel} to be 1×10^7 and 2×10^7 K at 3.5 and 4.5 R_{\sun}, respectively.

Results presented in Sections 5.1 and 5.2 for outflow speeds are summarized in Table 2 and Figure 9, which shows, for altitudes larger than 3 R_{\sun}, values for the wind

<table>
<thead>
<tr>
<th>Structure</th>
<th>$r = 3.5R_{\sun}$</th>
<th>$r = 4.5R_{\sun}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronal Hole, protons</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>oxygen</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>Streamer, protons</td>
<td>35</td>
<td>60</td>
</tr>
<tr>
<td>oxygen</td>
<td>65</td>
<td>105</td>
</tr>
</tbody>
</table>

Table 2. Low latitude wind speed (km/s)
speed in polar and equatorial holes from the present analysis and from literature, and from low-latitude streamer regions from this work. The plot shows that the proton wind speed from low latitude holes is, in the corona, about a factor 2.5 lower than in polar coronal holes, but is about a factor of 3 faster than in streamer regions. Oxygen ions move faster than protons, independent of the region where they originate from, but still they are slower than in polar holes. Fast OVI ion acceleration seems to occur below 3.5 R_{sun} in low latitude coronal holes, as the OVI outflow speed levels out between 3.5 and 4.5 R_{sun}. Analogous indications have been found by Cranmer et al. [1999] in polar coronal holes.

6. Discussion and Conclusions

The purpose of this paper is to identify the physical parameters in low-latitude coronal regions where plasma sampled by Ulysses experiments originate. The analysis we did allowed us to derive values of densities, outflow speeds, electron temperatures and Oxygen abundances at 3.5 and 4.5 solar radii which are consistent both with the UV line intensities measured at those levels and with parameters measured by $in situ$ instruments. In the following we list briefly our results and give a more extensive discussion of outflow speeds and electron temperatures in Sections, respectively, 6.1 and 6.2.

The low latitude slow wind, at coronal levels of 3.5 and 4.5R_{sun}:

- originates from either coronal holes or bright regions overlying streamer structures.
- has a proton outflow speed on the order of 100-150 km/s in coronal holes and 35-60 km/s in bright areas.
- has and OVI ion outflow speed higher than proton outflow speed by a factor two at the lower level, by a factor $\approx 1.5 -1.7$ at 4.5R_{sun}.
• is accelerated at higher levels and through a more extended region, than fast polar wind, independent of the region where low latitude wind originates.

• has kinetic temperatures from OVI line widths that in streamer regions are on the order of $1.5 - 2 \times 10^7 \, K$ and in coronal holes on the order of $6.8 \times 10^7 \, K$. That is, in low latitude holes the kinetic temperature is lower than in polar coronal holes.

• has electron temperatures at the levels we consider, although weakly defined (see Sec. 6.2), lower in coronal holes than in bright regions.

• has been assumed to have an anisotropic temperature distribution, with T_\parallel values between T_e and T_\perp, when synthesizing H Lymanα and OVI doublet line intensities. The anisotropy is larger for Oxygen ions, where T_\perp/T_\parallel is on the order of 2.2 in coronal holes and on the order of 1.3-1.5 in bright regions.

• has Oxygen ions frozen-in both in coronal holes and streamer regions, with freezing-in temperatures of, respectively, $\approx 1.3 - 1.5 \times 10^6 \, K$.

6.1. Proton and minor ion outflow speed in the low-latitude corona

It is well known that low-latitude solar wind is highly variable, but most of the low-latitude wind studies have so far focussed on its properties at the large distances sampled by in situ instrumentation, while the behavior of the outflow speed at coronal altitudes has been little explored. In this work we present results on this issue starting with the flow geometry. Previous analyses by Dobrzycka et al. [1999] and by Miralles et al. [2001] had already suggested that equatorial holes expand super-radially: here we provide further evidence for this, at least for altitudes lower than $3.5 \, R_{\text{sun}}$, because wind emanating from the low latitude extension of the coronal hole we analyzed would not have been sampled by Ulysses, should the flow be radial. We also derived an expansion factor of order 10, which is higher than the usually quoted figures for polar hole flows (which range from 2 – see, e.g. Habbal et al. [1995] – to 7.3, – see, e.g. Munro and Jackson, [1977]). That wind from regions with a higher expansion factor has a lower
speed (low-latitude holes) than regions with a lower expansion factor (polar holes) is consistent with the well known inverse relationship between expansion factors and wind speed [e.g., Wang and Sheeley, 1997; Neugebauer et al., 1998]. Beyond 3.5 R_{sun}, on the other hand, we know that the width of the coronal hole, as sampled by UVCS (see Figure 4) is similar to that sampled by Ulysses: hence the flow becomes radial in the first few solar radii.

The lower speed of low-latitude wind, measured by in situ experiments, corresponds to a lower outflow speed at coronal levels. Values for wind speed at 3.5 and 4.5 R_{sun} are given in Figure 9 and Table 2. What is perhaps more interesting is the evidence we found that the acceleration region of the solar wind, at low latitudes, extends over a longer altitude range than it does in polar holes. If we take 3.5 R_{sun} as a reference level we find a proton outflow speed on the order of 1/5 of the terminal wind speed, in low latitude regions, with respect to an outflow speed on the order of 1/3 of the terminal speed in polar holes [Cranmer et al., 1999].

Wind emanating from streamer regions is slower than coronal hole low-latitude wind by about 20%, in terminal speed, over the time we analyzed. At coronal levels, this translates into a factor of 3 difference, in speed, at altitudes 3.5 and 4.5 R_{sun}. Our results imply also a shift to higher distances of the region where plasma gets accelerated: apparently the slower the outflow speed the higher is the acceleration region. However, because we have only data at two levels, it is hard to say where acceleration occurs, both in low-latitude coronal holes and in streamer regions.

Oxygen ions move faster than protons, in coronal holes and streamer regions, in agreement with previous findings and theoretical predictions [e.g., Ofman, 2000; Cranmer et al., 1999]. If we consider the estimate of Miralles et al. [2001] as providing a typical OVI ion outflow speed at 3 solar radii, and join their data point to ours, it turns out that the region where Oxygen ions are accelerated is below the 3.5 R_{sun} level, at least in low-latitude coronal holes.
As to the variability of solar wind, since Ulysses was at \(\approx 5 \) AU, not much can be said, as we expect smaller fluctuations to be modified by dynamical interactions. However, it is worth pointing out that the separation between coronal hole and streamer flow is unambiguously identifiable in in situ data, even at such large distances. The variability we observe may offer a clue to the phenomena which cause it: open field regions, interspersed amidst closed coronal loops/streamers, at low latitude, are individually sampled by in situ experiments and are possibly responsible for the high wind variability of the low latitude wind. It may be difficult to detect the same level of variability at lower coronal level, because, unless observations are made at high altitudes, integration effects level out spatially limited flow speed excursions.

6.2. Electron temperatures in the extended corona

As we said, the knowledge of the electron temperatures in the extended corona is so poor that this is one of the most uncertain parameters of the calculations. Perhaps we have more information on \(T_e \) from OVI ions than from protons because SWICS \(O^{7+}/O^{6+} \) data (see Figure 8) indicate, in the first half of the campaign, a lower \(T_e \) than at later times. On the basis of this constraint, we reproduced the OVI doublet line intensities using electron temperatures of \(1.3 \times 10^6 \) K, in coronal hole regions, and \(1.5 \times 10^6 \) K in streamers.

The values we adopted are within the range of the SWICS data for plasma originating in the coronal regions we observed and can be compared with previous results from other authors. Oxygen freeze-in temperatures have recently been measured by Hefti et al. [2000] using the charge time-of-flight (CTOF) mass and charge spectrometer of CELIAS (Charge Element and Isotope Analysis System) on board of SOHO. These authors confirm the anticorrelation between the freezing-in temperature \(T_{76} \) derived from the \(O^{7+}/O^{6+} \) ratio and the solar wind speed, observed earlier [e.g. Galvin et al., 1984] and give values of \(T_{76} \) for the equatorial coronal hole which, on
the following rotation, would become the target of WSM1 analysis. This data are especially relevant to us, as they come from a situation similar to the one we are analyzing at present. As SOHO crossed the boundary of the coronal hole, Hefti et al. [2000] found a sudden increase of T_{76} from $1.3 \times 10^6 \, K$ to $1.6 \times 10^6 \, K$. Hefti et al. give uncertainties on the order of 10\%: hence the values of T_e which allowed us to reproduce the observed OVI line intensities are in excellent agreement with the latter authors’ findings. Our results are also in good agreement with the T_{65} (through the O^{6+}/O^{5+} ratio) vs. wind speed profile given by Grünwaldt et al. [1999]. Table 3 summarizes freezing-in temperatures and Oxygen abundances from our analysis.

Table 3. Oxygen freezing-in temperature and abundance

<table>
<thead>
<tr>
<th>Structure</th>
<th>Freezing-in temperature</th>
<th>Oxygen abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronal Hole</td>
<td>$1.3 \times 10^6 , K$</td>
<td>8.55</td>
</tr>
<tr>
<td>Streamer</td>
<td>$1.5 \times 10^6 , K$</td>
<td>8.73</td>
</tr>
</tbody>
</table>

What quadrature observations allow us to do is to set limits to the altitude, in the corona, where OVI ions are frozen-in. As our observations refer to altitudes $r = 3.5 - 4.5 \, R_{\text{sun}}$, Oxygen ions freeze-in below these levels, both in coronal holes and streamer regions. It is beyond the scope of this paper to make a detailed study of the profile of the Oxygen ionization state vs. altitude, in the corona, as we should know the radial profiles of electron temperature, density and OVI ions outflow speed at levels below those analyzed in the present work. Still we can check whether the physical parameters we derived at 3.5 and 4.5 R_{sun} are compatible with OVI ions freezing-in conditions. To this end, we examined both the streamer and coronal hole regions, and
compared the coronal expansion time with the OVI ionization equilibrium time.

We define the expansion time scale τ_{exp} as the time it takes particles to flow through one density scale height $\tau_{exp} = \left[(V_{out}/n_e)[dn_e/dr] \right]^{-1}$. The density scale height has been calculated from the n_e vs. r profiles derived from LASCo pB data, and it is rather ill defined at 3.5 R_{sun}, as profiles are given only for larger altitudes. Expansion times turn out to be on the order of $\approx 10^4$ s.

The ionization time scale is defined as $\tau_{eq} = 1/[n_e (C_i + A_i + R_r + D_r)]$, where C_i, A_i, and R_r, D_r are, respectively, the collisional ionization and auto-ionization rates, and the radiative and dielectronic recombination rates. Independent of the altitude, and both in streamers and coronal hole regions, the collisional ionization rate is the highest, among the processes we considered, and is on the order of $10^{-10} - 10^{-11}$ cm3s$^{-1}$ (we refer to Arnaud and Rothenflug [1985] for ionization rates; to Verner and Ferland [1996] for radiative recombination rates and to Mazzotta et al. [1998] for dielectronic recombination rates). The expansion time scale is much shorter than the OVI ionization time scale in the coronal hole, at 3.5 and 4.5 R_{sun}, and, in the streamer, at 4.5 R_{sun}. In streamers at 3.5 R_{sun}, the expansion time scale is at the same order as, but smaller than the OVI ionization time scale. This confirms that the freezing-in assumption for O^{5+} is valid. Hence, we found that the conclusions we drew that Oxygen ions are frozen in at and beyond 3.5 R_{sun} are consistent with order of magnitude calculations of τ_{exp} and τ_{eq}.

Hydrogen is known to freeze-in at higher altitudes than Oxygen, which means we expect, in case, a lower freezing-in temperature for Hydrogen than for Oxygen. This qualitative result is confirmed by our calculations. Withbroe et al. [1982] suggested the lifetime of Hydrogen atoms to become shorter than the coronal expansion time for $r \leq 8R_{sun}$ in equatorial regions and for $r \leq 3R_{sun}$ in polar coronal hole. In these regions Hydrogen atoms and protons should be coupled. Our results are in agreement with Withbroe’s results in coronal holes (we remind the reader that the equatorial hole we analyze has higher densities than polar holes and freezing-in is expected at higher
altitudes), but in streamers, at \(\approx 4.5 R_{\text{sun}} \), we had to adopt about the same \(T_e \) as at lower levels to be able to reproduce the Lyman-\(\alpha \) intensity - which might be taken as an indication that Hydrogen is frozen-in at that level. Calculations analogous to those outlined above for OVI ions, however, show that Hydrogen is still far from freezing-in conditions. The reason for this discrepancy is not clear, but it should most probably be interpreted as hinting to a temperature decrease with altitude much slower than in the streamer region analyzed by \textit{Gibson et al.} [1999].

We would like to conclude the paper by again reminding the reader of the benefits we get from making use of quadrature observations. The low latitude wind mass flux is highly variable [\textit{McComas et al.}, 2000] and at a latitude of \(\approx 15^\circ \) (which is \(\approx \) the latitude of Ulysses at the time of the fall 1998 quadrature), it can easily change by a factor 5. It is a tempting, and often adopted, technique to derive the coronal proton flow speed by assuming mass flux conservation, coronal densities, and an a priori magnetic field geometry. However, this procedure gives correct results only in the steady polar wind. In the highly variable low-latitude wind, the average \textit{in situ} mass flux value allows one to derive coronal outflow speeds only when uncertainties by a factor of 2-5 are acceptable. At the time of quadratures, however, the precise connection between coronal and \textit{in situ} plasma limits the risk of such large errors.

\textbf{Acknowledgments.} The research of GP has been partially supported by ASI. The research of STS has been supported by the Ulysses/SWOOPS experiment team (D. J. Comas, PI). We thank Ulysses/VHM/FGM (A. Balogh, PI), Ulysses/SWICS (G. Gloeskler and J. Geiss, Co-PIs), SOHO/LASCO (R. Howard, PI), and Sacramento Peak and Wilcox Solar Observatories for use of their data. SOHO and Ulysses are missions of international cooperation between ESA and NASA.

The Editor would like to thank the reviewer of this manuscript.
References

Galvin, A. B., F. M. Ipavich, G. Gloeckler, D. Hovestadt, B. Klecker, and M. Scholer, Solar wind ionization temperatures inferred from the charge state composition of diffuse

Hyder, C. L. and B. W. Lites, H_{α}; Doppler brightening and Lyman$_{\alpha}$, Doppler dimming in moving H_{α}; Prominences, *Solar Phys.*, 14, 147, 1970.

Neugebauer, M., and 12 others, The spatial structure of the solar wind and comparisons with

Withbroe, G. L., J. K. Kohl, and H. Weiser, Probing the solar wind acceleration region using

D. Biesecker, Emergent IT, Inc., NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. (email: doug@sungrazer.nascom.nasa.gov)

R. Esser and Y.-K. Ko, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA. (email: resser@cfa.harvard.edu; kuen@uvcs14.nascom.nasa.gov)

G. Gloeckler, University of Maryland, Department of Physics, College Park, MD 20742-2425, USA. (email: gloeckler@umdsp.umd.edu)

G. Poletto, Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi, 5, 50125 Firenze, Italy. (email: poletto@arcetri.astro.it)

S. T. Suess, NASA Marshall Space Flight Center/SD50, Huntsville, AL, 35812, USA. (email: steve.suess@msfc.nasa.gov)

T. Zurbuchen, Dept. of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA. (email: thomasz@umich.edu)

Received June 3, 2000; revised September 27, 2000; accepted December 31, 2000.

1Osservatorio Astrofisico di Arcetri, Firenze, Italy

2Marshall Space Flight Center, Huntsville, AL, USA.

3Goddard Space Flight Center, Greenbelt, MD, USA.

4Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA.

5University of Maryland, College Park, MD, USA.

6Dept. of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA.
Figure 1. SOHO/LASCO C2 negative, contrast-enhanced images of the west limb of the Sun on four days representative of the different conditions met along the directions Sun–Ulysses, at the time of the November/December SOHO–Ulysses quadrature. The inner circle defines the limb of the Sun, the edge of the gray circle gives the size of the C2 occulting disk, and the outer circle is at $\sim 6 \, R_{\text{sun}}$, the outer edge of the aperture. The solar equator and the Sun–Ulysses direction 17.4° south of the equator are shown by the black lines from the center of the image and the locations of the UVCS observing slit are shown by the thinner black lines crossing the direction to Ulysses at direction at 3.5 and 4.5 R_{sun}.

Figure 2. NSO/Sacramento Peak Fe XIV map for Carrington rotation 1943, covering the November/December 1998 days when the Ulysses-SOHO quadrature observations have been made. The data are E+W limb contours: 5, 7, 15, 25, 35, 45, 55, 65, 75, 85, and 95 millionths of I_o at 1.15 R_{sun}. Coronal holes are shown as white bordered by black. The Ulysses footpoint, 90° west of central Earth central meridian passage (CMP), is shown as a gray bar extending 3° north and south of the footpoint. The beginning and ending DOY are shown above the gray bar.

Figure 3. UVCS Lyman-α intensity profile along the slit, during 8 days of the SOHO–Ulysses quadrature campaign, from observations at 3.5 R_{sun}. Units along the abscissa are given in arcsec, the zero position (see the arrow) lying along the radial through Ulysses; North is on the left (negative abscissa values). Units along the ordinate axis are in $10^9 \, ph/cm^2/sr/s$. The transition from streamer activity north of the Sun–Ulysses direction (negative slit values) to streamer activity along and South of the Sun–Ulysses direction (positive slit values), is clear from the figures.
Figure 4. Lyman-α intensity vs. time, from November 29 to December 7, measured by UVCS at 3.5 (diamonds) and 4.5 (asterisks) R_{sun}, along the radial to Ulysses. The plotted intensities have been averaged over pixels included in about 1°, about the radial to Ulysses. Values at 4.5 R_{sun} have been multiplied by 3.1 to facilitate the comparison between the intensity behavior at the two altitudes. Data have been averaged over 2700 and 5400 s, at, respectively, 3.5 and 4.5 R_{sun}.

Figure 5. UVCS OVI I_{1032}/I_{1037} Å ratio at (top) 3.5 and (bottom) 4.5 R_{sun} vs. time, from November 29 to December 7. R values have been averaged over pixels included in about 1°, about the radial to Ulysses. A transition to high R values occurs an DOY 338–339, hinting to a decrease of the OVI ions outflow speed. Data have been averaged over 2700 and 5400 s, at, respectively, 3.5 and 4.5 R_{sun}. Horizontal lines are drawn at ratios corresponding to the average values of R over bright and dark regions.

Figure 6. Ulysses SWOOPS measurements of the proton flow speed, proton temperature, and number density of protons and alpha particles, VHM/FGM measurements of B_{ϕ}, and SWICS measurements of the O^{7+}/O^{6+} density ratio. The time interval corresponds to the expected arrival time of the plasma at Ulysses for the November/December SOHO-Ulysses quadrature. Assuming a solar wind plasma speed of 450 km/s, the extrapolated origin date is shown at the bottom of the top panel and the origin day of year is shown on the bottom panel.
Figure 7. Top panel: Ulysses SWOOPS proton speed, from Figure 4.1. Second panel: speeds extrapolated back to the Sun making the constant velocity approximation. Bottom panel: SWICS O$^{7+}$/O$^{6+}$ density ratio extrapolated to the Sun using the constant velocity approximation. The origin dates are shown as DOY in the bottom panel. Plasma in the dwell of the fast wind stream are highlighted in the top panel. This same data is plotted as boxes in the second panel to show that all of the plasma in the dwell originates from the same narrow band of longitudes on the Sun - the coronal hole. The O$^{7+}$/O$^{6+}$ density ratio data in the dwell is plotted as boxes or filled triangles depending on whether the ratio is typical of fast wind or slow wind.

Figure 8. Top panel: Ulysses SWICS alpha particle speed (solid line) and Oxygen speed (open triangles). Second panel: Daily averages of the O/H absolute abundance ratio. The DOY at Ulysses are shown across the bottom and the corresponding dates in 1998 are shown across the top.

Figure 9. Full symbols: squares, proton outflow speed at 3.5 and 4.5 solar radii, from the present study, for the 1998 low-latitude streamer and coronal hole we analyzed; diamonds: same as above, for OVI ions. Open symbols: squares, polar proton flow speed from Cranmer et al. [1999] minimum corona models. The plotted values comply with mass flux conservation and are calculated with an anisotropic temperature distribution ($T_\perp = T_\parallel$). Open diamonds: Oxygen flow speed, in equatorial holes, from Miralles et al. [2001], and, in polar holes, from Cranmer et al. [1999]. The range of values given by the authors – which correspond to different choices of the free parameter T_\parallel and of other model parameters – are shown in the Figure. These would be constrained, if the Oxygen mass flux would be known.
Figure 1, Poletto et al., SOHO-Ulysses Fall 1998 Quadrature
Figure 2, Poletto et al., SOHO-Ulysses Fall 1998 Quadrature
Figure 3, Poletto et al.,
SOHO-Ulysses Fall 1998
Quadrature
Ly-α intensity at 3.5 and 4.5R\textsubscript{Sun}: Latitude South 17/18 degrees

- Diamond: $I_{\text{Ly-α}}$ intensity at 3.5R\textsubscript{Sun}
- Asterisk: $3.1 I_{\text{Ly-α}}$ intensity at 4.5R\textsubscript{Sun}

Day of Year: Nov 29 – Dec 7, 1998
Figure 5, Poletto et al., SOHO-Ulysses Fall 1998 Quadrature
Date at Sun
Assuming Speed = 450 km/s

Figure 7, Poletto et al.,
SOHO-Ulysses Fall 1998
Quadrature
Figure 8, Poletto et al., SOHO-Ulysses Fall 1998 Quadrature
Flow Speed (km/s)

Radius (solar radii)

Figure 9, Poletto et al., SOHO-Ulysses Fall 1998 Quadrature