Sole, Stelle e Latitudine

Viene definita latitudine di un luogo l'angolo compreso tra l'equatore celeste (EQ) e lo zenit (Z), che è il punto d'incontro della sfera celaste con la verticale del luogo. Purtoppo in cielo non sono riconoscibili nè l'equatore nè lo zenit e questa definizione non è operativa.

Gli angoli EQEZ ed NEPNC sono uguali perchè complementari dello stesso angolo ZEPNC

Osserviamo però che quest'angolo è uguale a quello compreso tra l'orizzonte ed il Polo Nord Celeste, poichè sono entrambi complementari dello stesso angolo ZEPNC, compreso tra lo Zenit ed il Polo Nord Celeste.
Quest'ultimo è, in prima approssimazione, contrassegnato dalla stella polare e basterà quindi misurare la sua altezza per conoscere la latitudine di un luogo.

A causa della sfericità della Terra, osservatori in luoghi diversi (e quindi con diverse coordinate geografiche) misurano coordinate altoazimutali diverse per lo stesso astro, osservato contemporaneamente.

Se un astro culmina sul meridiano comune di due osservatori alla stessa longitudine, ma a diversa latitudine, di esso viene misurato lo stesso azimut, pari a 180 ° e la differenza delle altezze meridiane è pari, in valore assoluto, alla differenza delle latitudini.

|alt2 - alt1| = |LAT2 - LAT1|

Possiamo così trovare la latitudine di un luogo se conosciamo la latitudine di un altro luogo e se veniamo a sapere l'altezza alla culminazione di un astro in entrambi. Questo metodo non è di grande utilità per un viaggiatore, ma ci indica che, con oggetti in meridiano, la relazione tra latitudine ed altezza è senz'altro semplice.

Consideriamo ora una qualunque stella, Sole compreso, in culminazione meridiana:

L'altezza meridiana dell'astro è uguale alla somma della sua declinazione e dell'inclinazione dell'Equatore sul piano dell'orizzonte.
L'Equatore forma con l'orizzonte un angolo pari al complemento della latitudine, per cui:

Alt = 90° - LAT + DELTA

LAT = 90° - Alt + DELTA

La declinazione è una coordinata del sistema equatoriale e quindi uguale per tutti gli osservatori. Se si tratta di una stella possiamo considerarla costante nel tempo (almeno in prima approssimazione), se si tratta del Sole, la sua declinazione riassume ogni anno, alla stessa data, lo stesso valore, per cui può essere ricavata da un calendario astronomico, conoscendo la data dell'osservazione.

Non è facile misurare in mare, con la nave in moto, l'altezza meridiana di un astro, perchè la bussola non riesce ad indicare con sufficiente precisione la direzione Nord-Sud, e perchè, non conoscendo esattamente la longitudine, non si conosce il momento esatto della culminazine.
Sulla terraferma è invece una misura facile che è stata possibile fin dall'antichità con uno strumento molto semplice: lo Gnomone. Esso consiste in un bastone, un obelisco, una colonna. Si determina, prima di tutto, la direzione Nord-Sud, ossia la linea meridiana.

Al mattino l'ombra dello gnomone è lunga e diviene sempre più corta via via che ci si avvicina alla culminazione, cioè il mezzogiorno solare vero locale. Dopo mezzogiorno, nel pomeriggio, l'ombra torna ad allungarsi, ma nel momento della culminazione la sua lunghezza varia pochissimo, mentre varia velocemente la sua direzione. Insomma non è possibile determinare la direzione Nord-Sud come la direzione dell'ombra più corta, senza commettere grossolani errori. Gli antichi ricorrevano al metodo dei cerchi dell'Indo: poichè ad uguali intervalli di tempo, prima e dopo la culminazione, il Sole ha la stessa altezza sull'orizzonte, ombre uguali dello gnomone individuano la direzione dell'astro in questi istanti e queste direzioni sono simmetriche rispetto alla direzione meridiana. La direzione Nord-Sud resta così determinata dalla direzione della bisettrice dell'angolo formato da due ombre di uguale lunghezza.
Quando l'ombra del bastone si proietta lungo la linea meridiana determiniamo, contemporaneamente, l'istante della culminazione e la lunghezza meridiana dell'ombra.

Il rapporto h/l tra l'altezza del bastone e la lunghezza della sua ombra è la tangente trigonometrica dell'angolo che si vuol misurare. Si può ricavare l'ampiezza di quest'angolo senza fare ricorso alla trigonometria: si disegna un triangolo rettangolo con i cateti in scala rispetto alle misure di h ed l e si misura, con un goniometro, l'angolo compreso che, per la similitudine dei triangoli è perfettamente uguale all'altezza meridiana del Sole.

Potete consultare in rete l'annuario dell'Osservatorio astrofisico di Arcetri per ottenere la declinazione del Sole nei vari giorni dell'anno.

Per tornare alla pagina di provenienza usare il bottone back del browser

[indietro] [indice] [avanti]