Scientific Goal
We study the formation and early evolution of massive star clusters star by star, ultimately using self-consistent ISM models.

Method
Study stellar feedback in the MHD code FLASH[1] and couple this to collisional stellar dynamics and evolution in the AMUSE[2] software framework. Which includes:
1. 4th order Hermite N-body integrators ph4[3] and Hermite[4].
2. Stellar and binary evolution using SeBa[5].
3. Stellar ionizing and non-ionizing radiation using a modified version of FERVENT[6].
4. Supernovae implemented as described in [7].
5. Stellar winds module based in part on [7].

We will compare our models with simulations that place cluster members in sink particles such as [8,9]. Each star in our simulation is resolved, injects feedback individually and undergoes collisional dynamics with every other star.

Star Cluster Formation Under Feedback
Here we present a simulation of a $10^3$ solar mass turbulent cloud [10] ionization and PE heating and pressure) and background PE heating, effects of our radiation feedback (photo-ionization and PE heating and pressure) and a small cluster under the evolved levels and a max resolution of $\sim 2\times 10^3$ AU.

Clockwise from top left: (1) Density slice; (2) Phase plot of temperature vs. density; (3) Total energy density (gas + stars potential + gas kinetic + gas internal) in the rest frame with gas velocity; (4) Dynamic energy density (gas + stars potential + gas kinetic + potential) of relative motion within 1 pc of 4 solar mass star at cluster center. Black contour is $n_H > 10^4$ cm$^{-3}$, white is $n_H > 10^3$ cm$^{-3}$.

Here a 15 solar mass star has formed and is ionizing the surrounding gas. However a dense clump is able to survive even after the massive star passes through the region, and this clump later forms more stars (including another B star).

Plots from just after the first burst of star formation. Clockwise from top left: (1) Density slice; (2) Phase plot of temperature vs. density; (3) Total energy density (gas + stars potential + gas kinetic + gas internal) in the rest frame with gas velocity; (4) Dynamic energy density (gas + stars potential + gas kinetic + potential) of relative motion within 1 pc of 4 solar mass star at cluster center. Black contour is $n_H > 10^4$ cm$^{-3}$, white is $n_H > 10^3$ cm$^{-3}$.

The correlation dimension of the stars in the simulation computed in 2D. Our cluster appears slightly more fractal than expected (~1.6), which could be due to small numbers [11].

Fraction of gas that is Jeans unstable across the simulation.

Mass accretion rate across all sinks in the simulation. Sinks accrete mass that become individual stars followed with collisional dynamics.

Distribution of Gas and Stars
Clockwise from top left: A projection of density-weighted ionization fraction (1) before and (2) after B star passed through the filament with a density of $n_H \sim 10^3$ cm$^{-3}$ showing the HII region flickering. Radiation is blocked by this filament, allowing a second star formation event which leads to another 15 solar mass star. Combined effects of both stars are seen in ionization fraction (3) and density with gas velocity in (4).

Acknowledgements: We gratefully acknowledge support by NASA NNH13ZDA0101-ATP and NSF ATP-1101-0999. We also thank the DFG for support via SFB 881 “The Milky Way System and the ERC via the Advanced Grant "STARLIGHT" (contract 339177). M-MML acknowledges the Humboldt Stiftung for support. JF gratefully acknowledges STRW Leiden and ITA Heidelberg for hosting during portions of this work.

References:

AMUSE
National Supercomputing Center SURFSara.

Time Evolution of the System
The fraction of gas with $n_H > 10^4$ cm$^{-3}$ over the whole simulation. Density holds even as Jeans length falls, similar to results in [8].

The correlation dimension of the stars in the simulation computed in 2D. Our cluster appears slightly more fractal than expected (~1.6), which could be due to small numbers [11].

Radial distribution of both stellar and gas mass density within 1 pc of the cluster at 3.21 Myr. Both B stars have merged into the central cluster.

Distribution of Gas and Stars
Clockwise from top left: A projection of density-weighted ionization fraction (1) before and (2) after B star passed through the filament with a density of $n_H \sim 10^3$ cm$^{-3}$ showing the HII region flickering. Radiation is blocked by this filament, allowing a second star formation event which leads to another 15 solar mass star. Combined effects of both stars are seen in ionization fraction (3) and density with gas velocity in (4).

Acknowledgements: We gratefully acknowledge support by NASA NNH13ZDA0101-ATP and NSF ATP-1101-0999. We also thank the DFG for support via SFB 881 “The Milky Way System and the ERC via the Advanced Grant "STARLIGHT" (contract 339177). M-MML acknowledges the Humboldt Stiftung for support. JF gratefully acknowledges STRW Leiden and ITA Heidelberg for hosting during portions of this work.

References: